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3. Let Us assume a > 0 and c < 0 in the Cauchy data (1.2). Then the values 
of c / a, defined by the inequalities 

CD, (A) < c / o < @)3 (A) 
where 

@ (A) = - [(9A2 - 8 sign s)l’, + 5Al / 44 

@s(A) = 
i 

BJA, A>17J&12 

- 1(9C2 - 8signs)‘:.z+5C]/4A, A<171/2112 

correspond to the continuous flows, 
For A --t 00 (s + 0) we have m2 -+ -2, (D, --f --l/s. If 

@‘a (A) < c / a < 0, (D,(A) = B l-4. 

then a shock wave arises and the flow velocity behind the shock decreases in the direc- 
tion towards the exhaust end of the nozzle. The dependence of @a, @s, @a on A is 
shown in Fig. 1. Here the continuous flow corresponds to the region Q* . 

The authors thank S. V. Fal’kovich for useful discussions on this paper. 
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We obtain exact conditions for the stability of periodic motions. We show that 
the conditions found in n] are necessary and sufficient, but they are only appli- 
cable to motions not dependent on time. The conditions given in [Z] are 
applicable in the general case but are only sufficient (necessary) conditions 
of instability (stability). We consider the dependence of stationary motions 
on parameters. 
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Systems in which the length I is much larger than the transverse dimensions, are often 
studied in hydr~ynami~ (for example, in the problem concerning the motion of the 
liquid between rotating cylinders the length of the cylinders is considered large in com- 
parison with the gap between the cylinders ; in the study of a positive column of a gas- 
eous discharge the length of the column is considered large in comparison with the radius 
of the discharge pipe). In these cases the system end effects are neglected and it is as- 
sumed that 1 2 N; the state of these systems is defined by the parameters of the infi- 

nite problem. 
One of the possible states is the equilibrium state; it does not depend on the time t 

and on the longitudinal coordinate z (-I < ZZ< I). Infinitely small perturbations of 
equilibrium depend on t and 5 in the form Q (t, k) exp (iks); the amplitudes Q of the 

perturbations are proportional to es? pi, where p :k~ are the eigenvalues of the stability 

problem. For a loss of the equilibrium stability, r fk) = Rep > 0 in some interval of 
the wave numbers k; the amplitudes of corresponding perturbations grow exponentially. 

In the case of a large, but finite length I , it is assumed [l, 21 that k takes on a dis- 

crete series of values differing by 8 M i i I; as a result, the number of increasing per- 
turbations is found to be finite, but arbitrarily large. 

The nonlinear effects of the interaction of a large number of increasing perturbations 
often leads to the “survival” of only one perturbation and a suppression of perturbations 
with other wave numbers; as a result, there arises a stationary three-dimensional periodic 

motion (for example, vortices between the rotating cylinders or ionization waves in the 
positive discharge column). For a theoretical examination of such a motion its wave 
number 1: remains undetermined [l-4); it may have an arbitrary value for which 

r (4 > 0. 
A possible way to remove this indeterminacy is through a study of the stability of the 

stationary motion. The stability conditions found in [l, Z] do not agree with one another. 

We show below that these conditions are approximate; we find exact stability conditions. 

The amplitude Q (1~) of the unsteady motion satisfies an equation [Z], which describes 
the interaction of the perturbations with various k values, namely, 

co 

(1) 

Here p = y f isZ, Qi = Q (kt) and the second sum is taken over numbers satisfying 
the condition k, + . . 

s + km+, - km+, - e s s - kl+sm = 12, ki z k, (2) 

The functions rrn (k,, . . ., k r+zm) are symmetric with respect to the first (m+1) 
and the last m arguments. The increment of y (&) > 0 in a region with half-width 

a = (-2y, I $“, where y0 = y (k,) is the maximum value of y. The parameter 

JJ = A / k, (( 1; the approximate Eq. (2) means that ki =(kl - k,) / A - 1. 
Henceforth we shall use only the dimensionless numbers k’, therefore we omit the 

prime notation (for example, y I y. z 1 - kz). 
The stationary periodic motion (in which only Q(k) =#= 0) is described by the rela- 

_ 
tions 

Q = v/Qe@, 8 = 80 + wt, w==sz+; cJz,qm 

- symqm=T>O, rm+iRln=Pm(k)=~~;k,k,...,k) 

(3) 
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In the sequel we assume that yi < 0, so that q z -_Y / yl. 
For infinitely small perturbations Q” we obtain from Eqs. (1) - (3) 

dQ," ] dt = Q+“A+” + Q_‘B+e2@J, Q; = QV + I) 

4=Pw-E)f ;(m+l)q”T,(k~+&k,k ,...( k) 
Tl=1 

02 

B+ = 2 mqmr, (k, k, . . . , k, k7 5) 
Tll=1 

(4) 

The second equation is obtained from Eqs. (4) by replacing g by -E. These equations 

are obtained in [l] in the approximation 

A;=p(ktO+Qp,, B+ = qpi (5) 
The substitution 

Q& = R+eie, A*=A&iio (‘3) 

brings Eqs. (4) to the form 

dR, Jdt = R+A, + R-B,, dR_ Jdt = R_A_ + R,B_ (7) 

Here the second equation is obtained from the first one by replacing E by -6 and tak- 
ing complex conjugates. The solutions of these equations are proportional to exp ot, 

where 
(5 = a+ + (a” + p)“, a* = l/s (A+ f A_), /3 = B+B_ (8) 

The conjugate equations (7) correspond to conjugate values of o The solution (3) is 

stable if Re CJ < 0 for any E and unstable if Re CI > 0 for some E;. Setting 

lJ* = ReA*, z= -1/2(U++ U_), x= IRe(a_2+B)‘~I (9) 
a_ = u + iv, /3 = r + is, y = U,U_, E = s(uv + l/4 S) 

and noting that 

2x2 = ‘p + (q” + ,,,2)“*, Cp = 1J? - V2 + r, ,) = S + 2uv 

we find that the stability condition z > X is satisfied if 

5 > 0, f = x2 (2 - cp) - V&s = y (2 + v”) - z2r - a > 0 (16) 

For 5 = 0 we have f = 0; it follows directly from Eq. (8) that the corresponding 
number o = 0 and that the other number is negative. With the help of Eqs. (7) it is 
easy to show that for t -+ 00 the perturbation with E = 0 does not vanish completely, 
but results only in a change of the phase 8, of the stationary solution (3). This means 
that the stationary solution is stable relative to perturbations with E = 0. 

The case E # 0 is considered below in the approximation (5). when a = a = 0. 
The accuracy of the approximation is given by the estimate (s / E) / r - E / f - p 
(it follows from the fact that the quantities rrn and p are expanded in series with res- 

pect to pE with coefficients of the same order and that r is an even and s is an odd 

function of E). To within quantities -p , we obtain from Eqs. (5). (6), (8) and (9) 

y = 1 -k2, x = y + E2, u+ = -xt:Zky; (11) 

y = x2 - 4k2E2, r = y2 (1 + t12), v = PE2 - Vl 
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h = 51,/y,, p = -%“Jy,“, OGYYl1) 
Here y and r are written to within the factor ys2 and the remaining terms to within y,, 
(in the inequalities (10) these factors are unessential). 

According to (ll), the condition x > 0 is satisfied everywhere. To satisfy the second 
of the conditions (10) it is necessary that d > Cp; this gives 

Pl <-k Y>2U3--W) (12) 

The second necessary condition for satisfaction of the inequality f > 0 , is ZJ > 0 
which holds for y > r/s (the contrary inequality is a sufficient condition for instability). 
The latter relation can also be obtained from the inequality 

Re CT - max (U,, U_) = x - lul> 0 

which is satisfied to within quantities wp (if usr > -8). From this inequality it 

follows that for stability it is necessary that U, < 0; the latter is satisfied for y > 

‘j2 [Z]. In the particular case p = q = 0 , the condition y > 2/s is necessary and 
sufficient for stability Cl]. In the general case the condition of stability is 

f / (&z) = F (Lx) = 2s + bd + CC + d > 0 fJ: > Y) 

a = 1 + ps, b = y (3 + h) - 4, c = 4y (1 - y) (2 - h) 
d = -4yyi - Y) (g - h + 1) 
h = 2(1 - qp) I a, g = (1 + rt”) i a 

For stability it is necessary that F (y) > 0 which gives 

h> 0, y > 1 f (1 + lJa h J g) (13) 

The conditions (12) follow from the inequalities (13). When the inequalities (13) are 
satisfied, it is sufficient for stability that dF / dx > 0 for z > y; The latter is satis- 
fied if 

y > 4 / (min (h, 1 / h) + 6) (14) 
or if 

b2 < 3c (15) 

If neither one of the conditions (14) and (15) is satisfied, then F has a minimum for 

x* > y; stability holds if 

F (z,) > 0 (32, = (b2 - 3~)‘;~ - b) (16) 

when the inequalities (13) are satisfied. When the condition (16) is satisfied, the poly- 

nomial F has only a single real root ; therefore the condition for uniqueness of the root 
is 

(b3 - s/2bc + 27/2d)2 > (b2 - 3~)~ (17) 

which is equivalent to the condition (16). 

Thus, the periodic solution (3) is stable if both of the conditions (13) and one of 
the conditions (14) - (17) are satisfied ; it is unstable if one of the conditions (13) is 
not satisfied or if all the conditions (X4) - (17) are not satisfied. 

In particular, the solution with y = 1 is stable if h > 0. when 

YIY~ f iIt@" = Re (alp”)> 0 (18) 
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When h < 0 , the solution with y = 1 is unstable relative to perturbations for which 
~2 < -4,. The increment of Re cr assumes a maximum value y* for t = &, where 

&a = (--h f ‘/&“a) / (E - ‘l,ha), y* = -1’/2&2y,,hu /E (19) 

E = (1 - h + ‘/4h2a)“~ + 1 

From this, when h is small, we obtain the estimate y*- Yoh2 used below. 

The results obtained in [l - S] and in the present paper can accept as true the follow- 
ing interpretation. 

Suppose that an unstable equilibrium state corresponds to the parameters 3t and ini- 
tial amplitudes Q at k ==: k, are of the same order (here, and in what follows, k has 
the usual dimensionality) . Then when the condition (18) is satisfied, there arises p, 31 
a periodic motion (*) with k = k, (A). According to experiment [5]. the character- 

istic rise time ‘r- Z2 / 70” is proportional to the square of the length I [ 21. When 
the condition (18) is not satisfied a nonperiodic (turbulent) motion arises ; its amplitudes 

Qi satisfy the estimate [4] 
2 I QiI" G- ~01~1 (kiz ko) 

The rise time r.+ - 1 / y* for this motion depends on h. 
Suppose that h is small, so that (-h)‘l’l - 6 - 1 / (IA) < 1, where 6 is the di- 

mensionless distance between neighboring wave numbers ; then from (19) we obtain 

z/z,- a2 < 1. From the last inequality it follows that for small h the motion is 
periodic for z < t < z,. 

It was assumed above that the initial amplitudes of the perturbations are of the same 
order. Experimentally, such an initial condition realizes as follows. At the beginning a 
stable homogeneous equilibrium state corresponding to any of parameters h,, for which 

Yo (4) < 0 9 is established. Then, the parameters change rapidly (in comparison with 

the time Z) to values 3L which correspond to an unstable equilibrium state; moreover, 
it is essential that the characteristic time to establish equilibrium (independently of its 

stability) is determined by the “transverse” dimensions of the system (the distance bet- 
ween planes, tube radius, etc. ) and is therefore much less than Z. 

When the parameters change rapidly. the motion being established does not depend 
on h,and on the form of the curve L joining the points h, and 3L in the range of the 
parameters. The form of this curve is essential for a slow (in comparison with r) vari- 

ation of the parameters ; in particular, if L intersects the stability boundary at the point 
?L and when the condition (18) is satisfied, then a periodic motion arises with the num- 
bzr’ k, = k, (A*). This motion may prove to be stable on the whole curve L includ- 
ing the point J, . It follows from the above, that when the parameters change slowly, 
the wave number of the possible periodic motions at the point ?L depends on the form 
of the curve L (such a dependence was noticed in [5]). 

A continuous transition of a periodic stationary motion into a nonperiodic motion 
was observed in [S]. Such a transition can be explaned by the fact that when the para- 
meters vary the left side of the condition (18) changes sign. 

*) The dependence of thig motion on L is considered in [2]. 
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We construct an approximate solution of the problem concerning the propaga- 

tion of a planar. front of a two-stage exothermic sequential chemical reaction 

in a gas, by the method of matched asymptotic expansions. As the parameter 
in the expansion we use the ratio of the adiabatic combustion temperature to 
the sum of the activation temperatures of both reactions. Depending on the 
values of the characteristic parameters of the problem, we consider several 

solutions, each with a different asymptotic behavior, corresponding to the vari- 
ous flame front propagation modes. The analytical results obtained are com- 
pared with numerical data available in the literature. 

1, Formulrtfon of ths problem, The stationary propagation of a planar 

front of a two-stage sequential exothermic reaction A 1 -+- As -+ A s in a gas can, 
subject to a number of simplifying assumptions, be described by the following equations 

and boundary conditions : 

(1.3) 


